Contents

TOPIC INTRODUCTIONS

Measuring the Ca^{2+}-Binding Kinetics of Proteins
Guido C. Faas and Istvan Mody
*Cold Spring Harb Protoc*; 2014; 10.1101/pdb.top066258

Human Cancer Growth and Therapy in Immunodeficient Mouse Models
Leonard D. Shultz, Neal Goodwin, Fumihiko Ishikawa, Vishnu Hosur, Bonnie L. Lyons, and Dale L. Greiner
*Cold Spring Harb Protoc*; 2014; 10.1101/pdb.top073585

Fluorescence Correlation Spectroscopy: Principles and Applications
Kirsten Bacia, Elke Haustein, and Petra Schwille
*Cold Spring Harb Protoc*; 2014; 10.1101/pdb.top081802

Two-Photon Imaging of Neural Activity in Awake Mobile Mice
Daniel Dombeck and David Tank
*Cold Spring Harb Protoc*; 2014; 10.1101/pdb.top081810

PROTOCOLS

Subcapsular Transplantation of Tissue in the Kidney
Leonard D. Shultz, Neal Goodwin, Fumihiko Ishikawa, Vishnu Hosur, Bonnie L. Lyons, and Dale L. Greiner
*Cold Spring Harb Protoc*; 2014; 10.1101/prot078089

*PiggyBac* Transposon-Mediated Cellular Transgenesis in Mammalian Forebrain by In Utero Electroporation
Fuyi Chen, Brady J. Maher, and Joseph J. LoTurco
*Cold Spring Harb Protoc*; 2014; 10.1101/prot073650

Presynaptic Calcium Measurements Using Bulk Loading of Acetoxymethyl Indicators
Stephan D. Brenowitz and Wade G. Regehr
*Cold Spring Harb Protoc*; 2014; 10.1101/prot081828

Measuring the Steady-State Properties of Ca^{2+} Indicators with a Set of Calibrated [Ca^{2+}] Solutions
Guido C. Faas and Istvan Mody
*Cold Spring Harb Protoc*; 2014; 10.1101/prot073270
Cover Illustration: The piggyBac system can be used for the genomic integration of transgenes. Combinations of piggyBac donor and helper plasmids direct transgenesis in different cell types, as illustrated here. This month's issue includes a protocol for delivering a binary piggyBac transposon plasmid system into the mammalian brain by in utero electroporation (doi: 10.1101/pdb.prot073650). Image courtesy of Fuyi Chen and Joseph LoTurco.

General Cautions

The methods in this issue should be used by laboratory personnel with experience in laboratory and chemical safety or students under the supervision of such trained personnel. The procedures, chemicals, and equipment referenced in this issue are hazardous and can cause serious injury unless performed, handled, and used with care and in a manner consistent with safe laboratory practices. Students and researchers using the procedures in this issue do so at their own risk. It is essential for your safety that you consult the appropriate Material Safety Data Sheets, the manufacturers' manuals accompanying equipment, and your institution's Environmental Health and Safety Office, as well as the General Safety and Disposal Cautions (see www.cshprotocols.org/cautions), for proper handling of hazardous materials described in these articles. Cold Spring Harbor Laboratory makes no representations or warranties with respect to the material set forth in these articles and has no liability in connection with the use of these materials.

All registered trademarks, trade names, and brand names mentioned in this issue are the property of the respective owners. Readers should consult individual manufacturers and other resources for current and specific product information. Appropriate sources for obtaining safety information and general guidelines for laboratory safety are provided in the General Safety and Hazardous Material Information page online (www.cshprotocols.org/cautions).