Contents

TOPIC INTRODUCTIONS

Cellular and Synaptic Properties of Local Inhibitory Circuits
Court Hull
Cold Spring Harb Protoc; 2017; 10.1101/pdb.top095281

Analysis of RNA Metabolism in Fission Yeast
Jo Ann Wise and Olaf Nielsen
Cold Spring Harb Protoc; 2017; 10.1101/pdb.top079798

Analyzing and Understanding Lipids of Yeast: A Challenging Endeavor
Sepp D. Kohlwein
Cold Spring Harb Protoc; 2017; 10.1101/pdb.top078956

PROTOCOLS

Derivation of Mouse Embryonic Stem (ES) Cell Lines Using Small-Molecule Inhibitors of Erk and Gsk3 Signaling (2i)
Jennifer Nichols and Kenneth Jones
Cold Spring Harb Protoc; 2017; 10.1101/pdb.prot094086

Shipment of Live Preimplantation-Stage Mouse Embryos
Richard Behringer, Marina Gertsenstein, Kristina Vintersten Nagy, and Andras Nagy
Cold Spring Harb Protoc; 2017; 10.1101/pdb.prot092742

Measuring Feedforward Inhibition and Its Impact on Local Circuit Function
Court Hull
Cold Spring Harb Protoc; 2017; 10.1101/pdb.prot095828

Indirect Immunometric ELISA
Thomas O. Kohl and Carl A. Ascoli
Cold Spring Harb Protoc; 2017; 10.1101/pdb.prot093708

Direct and Indirect Cell-Based Enzyme-Linked Immunosorbent Assay
Thomas O. Kohl and Carl A. Ascoli
Cold Spring Harb Protoc; 2017; 10.1101/pdb.prot093732
Lipid Extraction from Yeast Cells 408
Oskar L. Knittelfelder and Sepp D. Kohlwein
Cold Spring Harb Protoc; 2017; 10.1101/pdb.prot085449

Thin-Layer Chromatography to Separate Phospholipids and Neutral Lipids from Yeast 412
Oskar L. Knittelfelder and Sepp D. Kohlwein
Cold Spring Harb Protoc; 2017; 10.1101/pdb.prot085456

Derivatization and Gas Chromatography of Fatty Acids from Yeast 416
Oskar L. Knittelfelder and Sepp D. Kohlwein
Cold Spring Harb Protoc; 2017; 10.1101/pdb.prot085464

Quantitative Analysis of Yeast Phospholipids and Sterols by High-Performance Liquid Chromatography–Evaporative Light-Scattering Detection 420
Oskar L. Knittelfelder and Sepp D. Kohlwein
Cold Spring Harb Protoc; 2017; 10.1101/pdb.prot085472

4-Thiouridine Labeling to Analyze mRNA Turnover in Schizosaccharomyces pombe 424
Juan Mata and Jo Ann Wise
Cold Spring Harb Protoc; 2017; 10.1101/pdb.prot091645

Estimating the Concentration of DNA by Fluorometry Using Hoechst 33258 429
Michael R. Green and Joseph Sambrook
Cold Spring Harb Protoc; 2017; 10.1101/pdb.prot093567

Library Quantification Using PicoGreen Fluorometry 432
Elaine Mardis and W. Richard McCombie
Cold Spring Harb Protoc; 2017; 10.1101/pdb.prot094722

Cover Illustration: Fluorescently labeled membranes spilling out from a yeast cell that was squeezed open under the microscope. In this issue, Sepp Kohlwein and colleagues describe how the yeast Saccharomyces cerevisiae serves as an excellent model to study lipids. They also provide experimental protocols for extracting, separating, and analyzing lipids in yeast. (Image courtesy of Sepp D. Kohlwein.)

General Cautions
The methods in this issue should be used by laboratory personnel with experience in laboratory and chemical safety or students under the supervision of such trained personnel. The procedures, chemicals, and equipment referenced in this issue are hazardous and can cause serious injury unless performed, handled, and used with care and in a manner consistent with safe laboratory practices. Students and researchers using the procedures in this issue do so at their own risk. It is essential for your safety that you consult the appropriate Material Safety Data Sheets, the manufacturers’ manuals accompanying equipment, and your institution’s Environmental Health and Safety Office, as well as the General Safety and Disposal Cautions (see www.cshprotocols.org/cautions), for proper handling of hazardous materials described in these articles. Cold Spring Harbor Laboratory makes no representations or warranties with respect to the material set forth in these articles and has no liability in connection with the use of these materials.

All registered trademarks, trade names, and brand names mentioned in this issue are the property of the respective owners. Readers should consult individual manufacturers and other resources for current and specific product information. Appropriate sources for obtaining safety information and general guidelines for laboratory safety are provided in the General Safety and Hazardous Material Information page online (www.cshprotocols.org/cautions).