

Contents

TOPIC INTRODUCTIONS

Imaging Intracellular Signaling Using Two-Photon Fluorescent Lifetime Imaging Microscopy 1121
Ryohei Yasuda
Cold Spring Harb Protoc; 2012; 10.1101/pdb.top072090

Estimating Volume in Biological Structures 1129
Mark J. West
Cold Spring Harb Protoc; 2012; 10.1101/pdb.top071787

PROTOCOLS

The Best Laid Plans: Analyzing Courtship Defects in *Drosophila* 1140
Stephen F. Goodwin and Kevin M.C. O'Dell
Cold Spring Harb Protoc; 2012; 10.1101/pdb.prot071647

CLIP (Cross-Linking and Immunoprecipitation) Identification of RNAs Bound by a Specific Protein 1146
Robert Darnell
Cold Spring Harb Protoc; 2012; 10.1101/pdb.prot072132

Two-Photon Sodium Imaging in Dendritic Spines 1161
Christine R. Rose
Cold Spring Harb Protoc; 2012; 10.1101/pdb.prot072074

In Vivo Imaging of the Developing Neuromuscular Junction in Neonatal Mice 1166
Stephen G. Turney, Mark K. Walsh, and Jeff W. Lichtman
Cold Spring Harb Protoc; 2012; 10.1101/pdb.prot072082

Lymphangiography of the Mouse Tail 1177
Rakesh K. Jain, Lance L. Munn, and Dai Fukumura
Cold Spring Harb Protoc; 2012; 10.1101/pdb.prot072108

Lymphangiography of the Mouse Ear 1179
Rakesh K. Jain, Lance L. Munn, and Dai Fukumura
Cold Spring Harb Protoc; 2012; 10.1101/pdb.prot072116

In Vitro Transcription of Labeled RNA: Synthesis, Capping, and Substitution 1181
Timothy W. Nilsen and Donald C. Rio
Cold Spring Harb Protoc; 2012; 10.1101/pdb.prot072066

Removing rRNA from Deproteinized, Phenol-Extracted Total RNA by Enzymatic Digestion	1187
Timothy W. Nilsen	
<i>Cold Spring Harb Protoc</i> ; 2012; 10.1101/pdb.prot072124	
Objective-Type Total Internal Reflection Microscopy (Excitation) for Single-Molecule FRET	1189
Chirlmin Joo and Taekjip Ha	
<i>Cold Spring Harb Protoc</i> ; 2012; 10.1101/pdb.prot072025	
Objective-Type Total Internal Reflection Microscopy (Emission) for Single-Molecule FRET	1192
Chirlmin Joo and Taekjip Ha	
<i>Cold Spring Harb Protoc</i> ; 2012; 10.1101/pdb.prot072033	

INFORMATION PANEL

Sample Processing Considerations for Detecting Copy Number Changes in Formalin-Fixed, Paraffin-Embedded Tissues	1195
Sharoni Jacobs	
<i>Cold Spring Harb Protoc</i> ; 2012; 10.1101/pdb.ip071753	
Data Analysis Considerations for Detecting Copy Number Changes in Formalin-Fixed, Paraffin-Embedded Tissues	1203
Sharoni Jacobs	
<i>Cold Spring Harb Protoc</i> ; 2012; 10.1101/pdb.ip071761	

Cover Illustration: In this issue, Turney and colleagues (doi: 10.1101/pdb.prot072082) provide a protocol for imaging developing neuromuscular junctions in living mice. The four panels show (from *left to right, top to bottom*): original confocal image of a dually innervated neuromuscular junction at postnatal day 8 (each axonal input expressing cyan fluorescent protein [CFP] and yellow fluorescent protein [YFP]); confocal image of smaller “red” input (bleaching down fluorescence in larger “yellow” input transiently); confocal image after refilling (bleaching YFP in larger input to change its color to green); and confocal image of the same neuromuscular junction a day later. CFP and YFP (pseudo-colored green and red, respectively) were expressed cytoplasmically in all motor neurons. The expression level of each varied independently from cell to cell. Acetylcholine receptors were lightly labeled with alexa-647 α -bungarotoxin (pseudo-colored blue). Fluorescence recovery after photobleaching (refilling) occurred within a few minutes. The combination of multi-color labeling and selective photobleaching facilitates studying of changes in the spatial relationship between inputs over time. Images courtesy of Stephen Turney and Jeff Lichtman.

General Cautions

The methods in this issue should be used by laboratory personnel with experience in laboratory and chemical safety or students under the supervision of such trained personnel. The procedures, chemicals, and equipment referenced in this issue are hazardous and can cause serious injury unless performed, handled, and used with care and in a manner consistent with safe laboratory practices. Students and researchers using the procedures in this issue do so at their own risk. It is essential for your safety that you consult the appropriate Material Safety Data Sheets, the manufacturers' manuals accompanying equipment, and your institution's Environmental Health and Safety Office, as well as the **General Safety and Disposal Cautions** (see www.cshprotocols.org/cautions), for proper handling of hazardous materials described in these articles. Cold Spring Harbor Laboratory makes no representations or warranties with respect to the material set forth in these articles and has no liability in connection with the use of these materials.

All registered trademarks, trade names, and brand names mentioned in this issue are the property of the respective owners. Readers should consult individual manufacturers and other resources for current and specific product information. Appropriate sources for obtaining safety information and general guidelines for laboratory safety are provided in the **General Safety and Hazardous Material Information** page online (www.cshprotocols.org/cautions).