

## Contents

### TOPIC INTRODUCTIONS

|                                                                                                                                                                                                                                                                                                                                                     |     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| <b>Translational Therapeutics in Genetically Engineered Mouse Models of Cancer</b><br>Kenneth P. Olive and Katerina Politi<br><i>Cold Spring Harb Protoc</i> ; 2014; 10.1101/pdb.top069997                                                                                                                                                          | 131 |
| <b>Mouse to Human Blood-Based Cancer Biomarker Discovery Strategies</b><br>Samir M. Hanash and Ayumu Taguchi<br><i>Cold Spring Harb Protoc</i> ; 2014; 10.1101/pdb.top078808                                                                                                                                                                        | 144 |
| <b>Genetic Labeling of Neurons in Mouse Brain</b><br>Z. Josh Huang, Hiroki Taniguchi, Miao He, and Sandra Kuhlman<br><i>Cold Spring Harb Protoc</i> ; 2014; 10.1101/pdb.top080374                                                                                                                                                                   | 150 |
| <b>Measurement of Mitochondrial <math>\text{Ca}^{2+}</math> Transport Mediated by Three Transport Proteins: VDAC1, the <math>\text{Na}^+/\text{Ca}^{2+}</math> Exchanger, and the <math>\text{Ca}^{2+}</math> Uniporter</b><br>Danya Ben-Hail, Raz Palty, and Varda Shoshan-Barmatz<br><i>Cold Spring Harb Protoc</i> ; 2014; 10.1101/pdb.top066241 | 161 |
| <b>Imaging Biological Samples with Atomic Force Microscopy</b><br>Pedro J. de Pablo and Mariano Carrión-Vázquez<br><i>Cold Spring Harb Protoc</i> ; 2014; 10.1101/pdb.top080473                                                                                                                                                                     | 167 |

### PROTOCOLS

|                                                                                                                                                                                                                                               |     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| <b>Generation of Drug-Resistant Tumors Using Intermittent Dosing of Tyrosine Kinase Inhibitors in Mouse</b><br>Valentina Pirazzoli and Katerina Politi<br><i>Cold Spring Harb Protoc</i> ; 2014; 10.1101/pdb.prot077842                       | 178 |
| <b>Mosaic Analysis with Double Markers (MADM) in Mice</b><br>J. Sebastian Espinosa, Joy S. Tea, and Liquan Luo<br><i>Cold Spring Harb Protoc</i> ; 2014; 10.1101/pdb.prot080366                                                               | 182 |
| <b>Cre-Dependent Adeno-Associated Virus Preparation and Delivery for Labeling Neurons in the Mouse Brain</b><br>Z. Josh Huang, Hiroki Taniguchi, Miao He, and Sandra Kuhlman<br><i>Cold Spring Harb Protoc</i> ; 2014; 10.1101/pdb.prot080382 | 190 |

|                                                                                                  |     |
|--------------------------------------------------------------------------------------------------|-----|
| <b>Assay of Ca<sup>2+</sup> Transport by VDAC1 Reconstituted into Liposomes</b>                  | 195 |
| Danya Ben-Hail and Varda Shoshan-Barmatz                                                         |     |
| <i>Cold Spring Harb Protoc</i> ; 2014; 10.1101/pdb.prot073155                                    |     |
| <b>Assays of Mitochondrial Ca<sup>2+</sup> Transport and Ca<sup>2+</sup> Efflux via the MPTP</b> | 199 |
| Danya Ben-Hail and Varda Shoshan-Barmatz                                                         |     |
| <i>Cold Spring Harb Protoc</i> ; 2014; 10.1101/pdb.prot073163                                    |     |
| <b>Mitochondrial Na<sup>+</sup>/Ca<sup>2+</sup> Exchange Assays</b>                              | 202 |
| Raz Palty and Varda Shoshan-Barmatz                                                              |     |
| <i>Cold Spring Harb Protoc</i> ; 2014; 10.1101/pdb.prot073171                                    |     |
| <b>Tracking Receptors Using Individual Fluorescent and Nonfluorescent Nanolabels</b>             | 207 |
| Laurent Cognet, Brahim Lounis, and Daniel Choquet                                                |     |
| <i>Cold Spring Harb Protoc</i> ; 2014; 10.1101/pdb.prot080416                                    |     |
| <b>Scanning Microarray Slides</b>                                                                | 214 |
| Manuel Ares Jr.                                                                                  |     |
| <i>Cold Spring Harb Protoc</i> ; 2014; 10.1101/pdb.prot080481                                    |     |
| <b>Tips on Hybridizing, Washing, and Scanning Affymetrix Microarrays</b>                         | 219 |
| Manuel Ares Jr.                                                                                  |     |
| <i>Cold Spring Harb Protoc</i> ; 2014; 10.1101/pdb.prot080499                                    |     |
| <b>Methods for Processing Microarray Data</b>                                                    | 225 |
| Manuel Ares Jr.                                                                                  |     |
| <i>Cold Spring Harb Protoc</i> ; 2014; 10.1101/pdb.prot080507                                    |     |

**Cover Illustration:** Ultrasound image of a mouse pancreatic tumor (hashed line) encasing a major blood vessel (red/yellow structure at center). A 35-MHz b-mode image (black and white) is overlaid with color Doppler ultrasound showing speed and directionality of blood flow. Recent advances in imaging and other technologies have enabled clinically relevant studies to be performed in genetically engineered mouse models, as described by Kenneth Olive and Katerina Politis in this issue (doi: 10.1101/pdb.top069997). Image courtesy of Steven A. Sastra and Kenneth P. Olive.

## General Cautions

The methods in this issue should be used by laboratory personnel with experience in laboratory and chemical safety or students under the supervision of such trained personnel. The procedures, chemicals, and equipment referenced in this issue are hazardous and can cause serious injury unless performed, handled, and used with care and in a manner consistent with safe laboratory practices. Students and researchers using the procedures in this issue do so at their own risk. It is essential for your safety that you consult the appropriate Material Safety Data Sheets, the manufacturers' manuals accompanying equipment, and your institution's Environmental Health and Safety Office, as well as the **General Safety and Disposal Cautions** (see [www.cshprotocols.org/cautions](http://www.cshprotocols.org/cautions)), for proper handling of hazardous materials described in these articles. Cold Spring Harbor Laboratory makes no representations or warranties with respect to the material set forth in these articles and has no liability in connection with the use of these materials.

All registered trademarks, trade names, and brand names mentioned in this issue are the property of the respective owners. Readers should consult individual manufacturers and other resources for current and specific product information. Appropriate sources for obtaining safety information and general guidelines for laboratory safety are provided in the **General Safety and Hazardous Material Information** page online ([www.cshprotocols.org/cautions](http://www.cshprotocols.org/cautions)).