Protocol

Magnetic Trap Construction

Adapted from Single-Molecule Techniques (ed. Selvin and Ha). CSHL Press, Cold Spring Harbor, NY, USA, 2008.

Abstract

In recent years, techniques have been developed to study and manipulate single molecules of DNA and other biopolymers. In one such technique, the magnetic trap, a single DNA molecule is bound at one end to a glass surface and at the other to a magnetic microbead. Small magnets, whose position and rotation can be controlled, pull on and rotate the microbead. This provides a simple method to stretch and twist the molecule. The system allows one to apply and measure forces ranging from 10−3 to >100 picoNewtons (pN). In contrast to other techniques, the force measurement is absolute and does not require calibration of the sensor. This protocol describes a procedure for building and using a magnetic trap. It gives a method for constructing a microchamber suitable for magnetic tweezers studies, including antibody coating and passivation. It also describes a series of simple steps to achieve end-labeling of DNA anchoring fragments. One anchoring fragment is biotin-labeled and the other is labeled with digoxigenin. The anchoring fragments are then digested and ligated to a central DNA region containing the sequence of interest. The biotinylated DNA is adsorbed onto streptavidin-coated magnetic beads, and the DNA–bead mixture attaches specifically to the antidigoxigenin-coated surface of the microchamber.

| Table of Contents