Protocol

Reverse Genetics by Loss-of-Function Mosaic Analysis in Drosophila

Adapted from Drosophila Neurobiology (ed. Zhang et al.). CSHL Press, Cold Spring Harbor, NY, USA, 2010.

Abstract

Genetic mosaics in Drosophila typically involve derivation of homozygous daughter cells from heterozygous precursors through mitotic recombination. MARCM (mosaic analysis with a repressible cell marker) couples loss of heterozygosity with derepression of a marker gene, permitting unique labeling of specific homozygous daughter cells. The generation of GAL80-minus homozygous daughter cells in otherwise heterozygous tissues allows GAL4-dependent activation of upstream activation sequence (UAS)-reporter specifically in the homozygous cells of interest. To make MARCM clones, organisms must carry at least five genetic elements (flippase [FLP], flippase recognition targets [FRTs], tubP-GAL80, GAL4, and UAS-marker) in specific configurations. One major application of MARCM, as described here, is to study cell-autonomous function(s) of a gene within single cells or a group of cells in otherwise unperturbed organisms. A mutation of interest distal to one FRT site is put in trans to a tubP-GAL80-containing chromosome arm that carries the same FRT. The resulting MARCM clones, which are negative for tubP-GAL80 and thus specifically marked, will become homozygous for the mutation in otherwise heterozygous organisms. By including a UAS-transgene, one can perform rescue experiments in the mutant MARCM clones. Conversely, if the mutation is placed on the same chromosome arm as tubP-GAL80, MARCM-labeled cells will be homozygous wild-type and may lie adjacent to sister cells that are homozygous mutant. This variant, called reverse MARCM, allows one to determine non-cell-autonomous effects of a mutation.

No Related Web Pages
| Table of Contents