Protocol

Two-Photon Calcium Imaging in the Brain of Aedes aegypti Mosquitoes

  1. Carolyn S. McBride1,2,4
  1. 1Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544, USA
  2. 2Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey 08544, USA
  1. 4Correspondence: csm7{at}princeton.edu

Abstract

Understanding the neural basis of mosquito behavior is critical for designing effective vector control strategies and can potentially shed new light on basic nervous system function. Because mosquitoes are a non-model species, however, functional studies of mosquito nervous systems have long been restricted to electrophysiological recording from peripheral sensory organs such as the antenna. This is now changing with the advent of CRISPR–Cas9 gene editing and the development of other powerful new genetic tools. Transgenic mosquitoes that carry genetically encoded calcium sensors, for example, open the door to optical recording of neural activity with two-photon calcium imaging. Compared with electrophysiology, calcium imaging permits continuous monitoring of neural activity from large populations of neurons, even deep in the brain. When combined with selective neural drivers, it also allows targeted recording from specific neuronal types. Here, we describe a calcium imaging protocol we use in our laboratory to study neural activity in the brain of Aedes aegypti mosquitoes.

Footnotes

  • 3 Present address: Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14853, USA

  • From the Mosquitoes collection, edited by Laura B. Duvall and Benjamin J. Matthews.